

Les pollutions portuaires accidentelles - Recensement et analyse

Journée d'information du Cedre 28 septembre 2017, Paris

I. Calvez

Contenu

- Rappel sur le contexte de la recherche/compilation des données accidentelles
 - Sources d'information
 - Quantité, qualité

– ...

- Analyse de données:
 - Caractérisation des déversements en milieux portuaires?

Contexte

- « Veille technologique sur la lutte contre les pollutions accidentelles dans les eaux marines et intérieures » :
 - Pluriannuel; 1997→ bilan (demande du Ministère des Transports,
 Total, Marine Nationale...):
 - Réponse aux déversements accidentels (HC et SNPD) :
 - Lutte en cas de pollution (strat., problématiques techn./environ., etc.);
 - Evolutions en matière: de R&D, de préparation à la lutte, ...;
 - Nouveautés: équipements, techniques de réponse, ...;
 - Enseignements (suivi/veille post-accident)
- « Inventaire des déversements accidentels »
 - Pluriannuel; 2006 → organisation/bancarisation des données (élaboration d'une base)

- Conservation de l'information
- Restitutions/analyses (stats.)

Des sources diversifiées

- Support papier :
 - Revues et ouvrages spécialisés (quelques exemples) :
 - Bulletins hebdomadaires : Oil Spill Intelligence Report (OSIR), International Spill Control (ISCO) Newsletter ;
 - Recueils de conférences/actes de colloques : AMOP, IOSC, Spillcon, TSOCS, Interspill, UKSpill, etc.
 - Rapports d'études par ou pour certains organismes étrangers (ex : rapport annuel FIPOL, Fonds canadien d'indemnisation, etc.) ;
 - <u>Rapports d'opérationnels</u>; ex : Gardes Côtières (américaines, britanniques, norvégiennes, etc.)
 - Fonds docu. Cedre (Marine Poll. Bull., Hazardous Cargo Bull., Préventique Sécurité, etc.)...

Des sources diversifiées

• Internet:

Recours systématique :

- Mode de diffusion <u>de plus en plus utilisé</u> :
- Par une <u>diversité d'acteurs</u> de la lutte antipollution :
 - politiques, opérationnels, scientifiques, industriels...
 - ... lors d'accidents ;
 - informations sur les structures impliquées, les circonstances, les produits, les zones géographiques, etc.; <u>presse</u> ou <u>sites spécifiques</u>
 - ... en activité de routine ;
 - fabricants de matériels/prestataires de services (bulletins, news...);
 - organismes opérationnels nationaux étrangers (NOOA, CG, UKMCA, AMSA, etc.);
 - organismes experts (ex : ITOPF,...), organisations internationales (OMI, AESM, ...), centres de recherche ou assimilés, etc.

Sites de manifestations internationales (PAJ symposiums, FWSS, ...)

Des sources diversifiées

Interventions du Cedre (PC et/ou terrain)

- Participations à ateliers, colloques, conférences :
 - France et étranger :
 - Conférences + contacts et échanges
 - Exemples conférences/réunions internationales 2017 :
 - Avril, Singapour : 12th ICOPCE (International Chemical & Oil Pollution Conference and Exhibition)
 - Mai, USA: International Oil Spill Conference 2017
 - Septembre, UK: ITAC (Industry Technical Advisory Committee)
 - Octobre, Canada : 40ème colloque technique de l'AMOP (Arctic Marine Oilspill Programme)

L'analyse des informations

- Variabilité de la disponibilité/quantité
 - Différentes raisons :
 - Diffusion (et niveau/précision) de l'information décroît avec l'ampleur de l'incident (constat valable à l'échelle mondiale)
 - Δ selon pays/régions géographiques ;
 - Des domaines moins documentés
 - Par exemple : domaine fluvial << domaine littoral ou marin</p>
 - » Nombre élevé... mais souvent mineurs (de l'ordre du m³)
 - » Manque de centralisation des infos \rightarrow limitation du reportage.

L'analyse des informations

- Variabilité qualitative
 - Selon le domaine d'expertise :
 - Antipollution : ex : gardes-côtières, etc.
 - Impacts, soutien scientifique : NOAA, ...
 - Accidents transports maritimes: Lloyds, sites Premar...
 - Incidents sites classés: BARPI...
 - → spécificité des intérêts (domaine concerné, polluants, structures impliquées...)
 - Localisation, type et volume déversé, source, causes, etc.
 - … hétérogénéité de l'information (∆ retex réponse)

Nécessité de croiser/compléter les informations

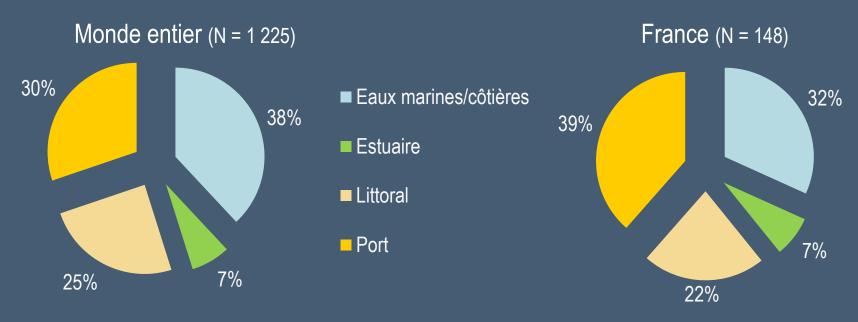
Déversements accidentels - Analyse

Données exploitées:

• Période : 1998-2017

Distribution: monde entier

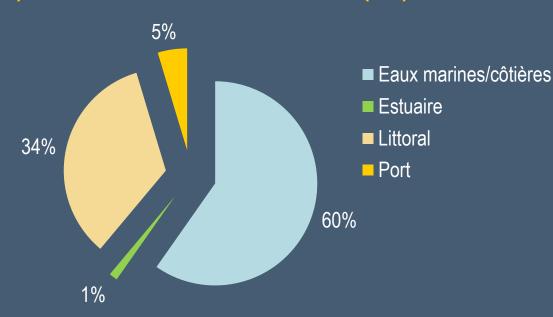
 Accidents <u>suivis de déversements dans les eaux</u> <u>superficielles</u>


Produits: Hydrocarbures, SNPD

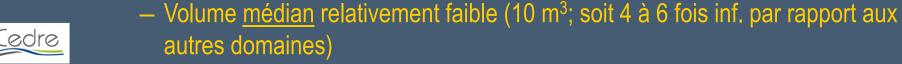
Sources: Toutes structures

Ports vs. mer/estuaire/litt.

(1) Fréquence relative des déversements par domaine (%)

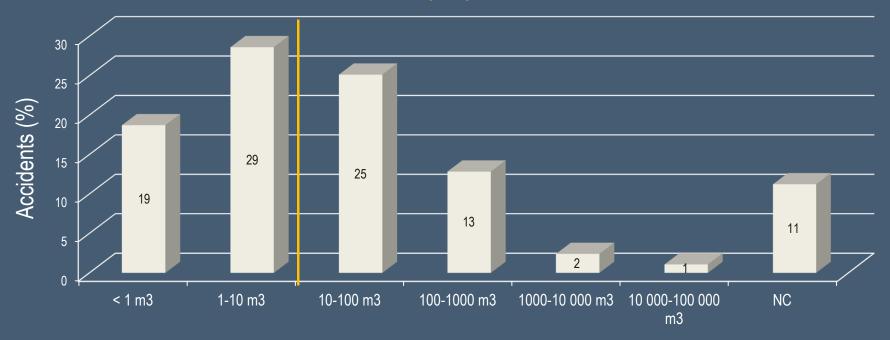


- Inventaire 1998-2016:
 - → Déversements accidentels en eaux portuaires ≈ 1/3 des cas


Ports vs. mer/estuaire/litt.

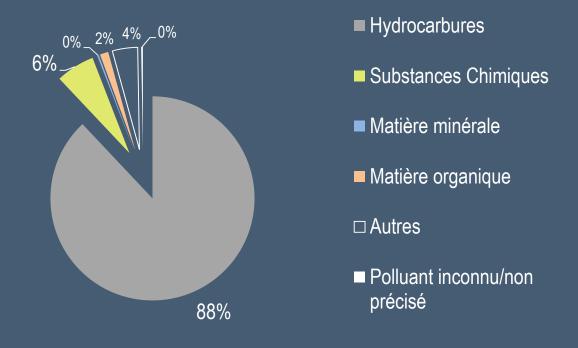
(2) Contribution relative (%) au volume total déversé

1998-2017	Volume médian (m³)
Eaux marines/côtières	60
Littoral	45
Estuaire	40
Port	10


- Inventaire 1998-2016:
 - → Déversements accidentels en eaux portuaires ≈ 1/3 des cas
 - → ... mais en termes de volumes cumulés : << pollutions marines et littorales

Focus: ampleur des déversements en ports

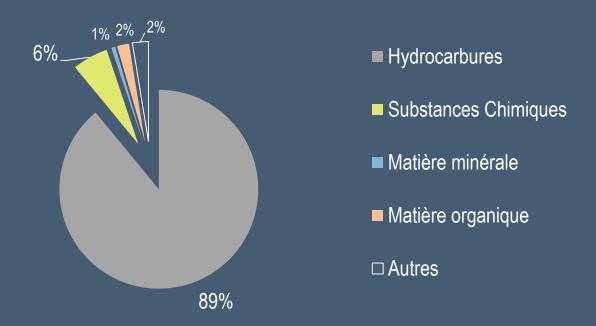
Distribution des accidents (%) par classes d'ampleur



- Inventaire 1998-2016:
 - → Volume médian # 10 m³
 - → Relative rareté des déversements > 100 m³ (15 % environ)

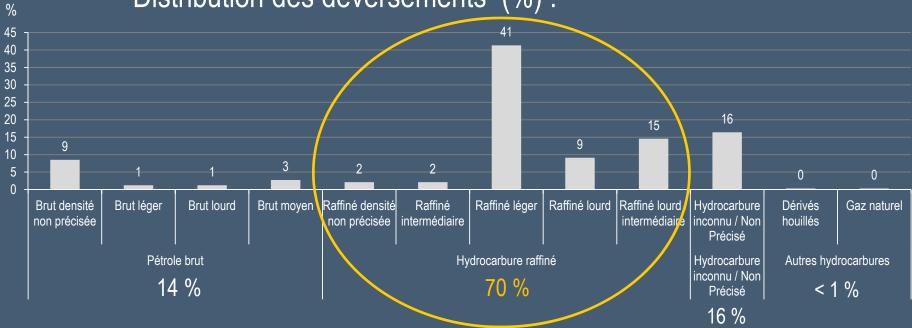
Fréquence des déversements (%) par type de produit

• Toutes ampleurs confondues :



Dans la très large majorité des cas: déversement d'HC

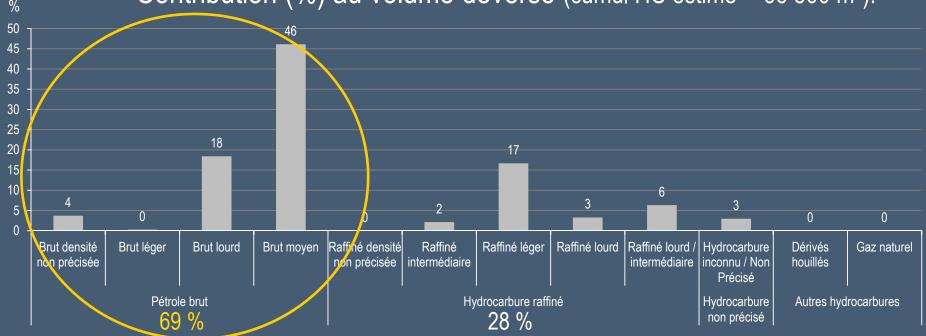
Fréquence des déversements (%) par type de produit


• Ampleur > 10 m³:

- Dans la très large majorité des cas (90 %): déversement d'HC
- SNPD = 2nd en termes de fréquence (≈ 6% des cas)

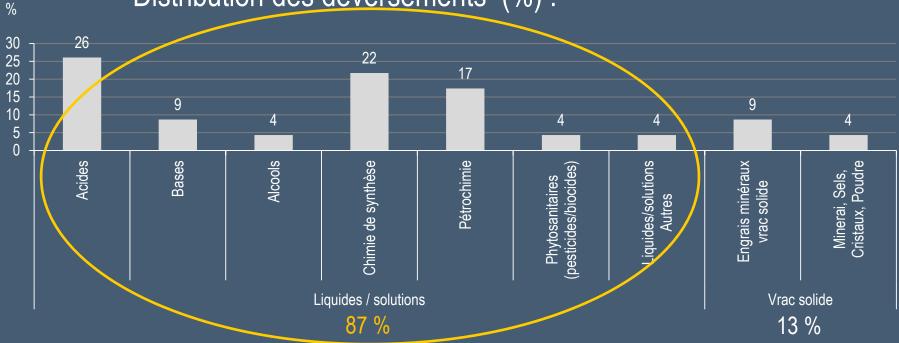
(1) Cas de déversements d'hydrocarbures

• Distribution des déversements (%) :



- Evènements impliquent <u>le plus souvent des raffinés</u>
 - généralement : produits pétroliers raffinés légers (produits blancs)
- Bruts ≈ 15% des cas

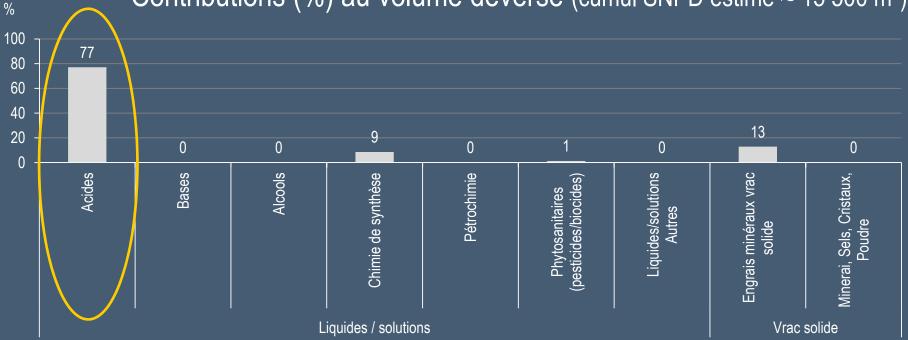
(1) Cas de déversements d'hydrocarbures


• Contribution (%) au volume déversé (cumul HC estimé ≈ 66 500 m³):

- ... en termes de <u>volumes</u> : part dominante = <u>pétroles bruts</u>
 - Explication:
 - Pétroles bruts : volume médian déversé ≈ 100 m³
- Cedre
- HC raffinés : volume médian déversé ≈ 10 m³

(1) Cas des déversements de SNPD

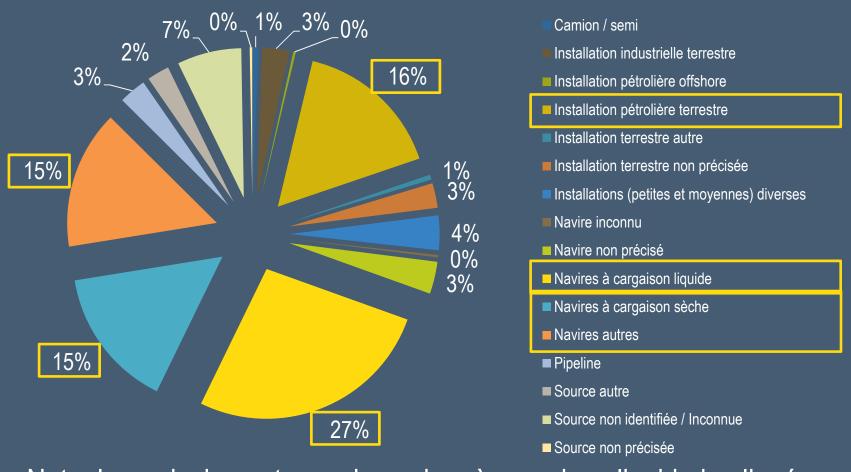
• Distribution des déversements (%) :


- Evènements impliquant le plus souvent des liquides:
 - ¼ des déversements SNPD = acides (sulfurique ++, chlorhydrique)
 - chimie de synthèse divers (méthacrylate de méthyle, carbonate de diméthyle...etc)

• pétrochimie divers (styrène, xylène, propène, paraffines...)

(1) Cas des déversements de SNPD

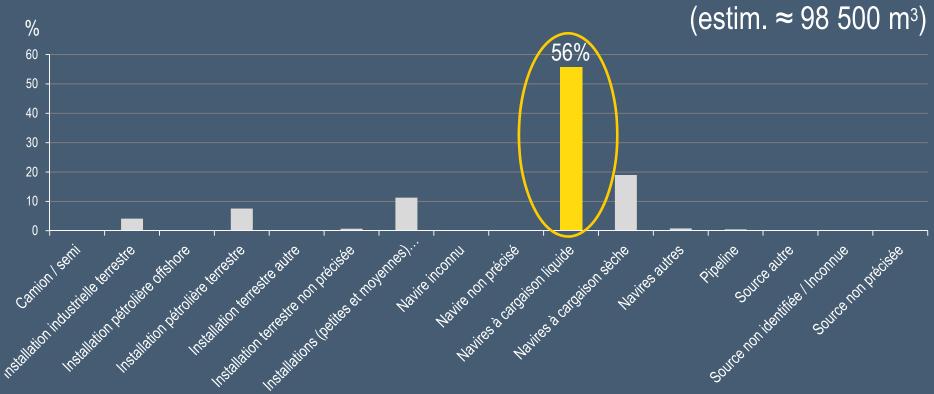
• Contributions (%) au volume déversé (cumul SNPD estimé ≈ 15 500 m³):



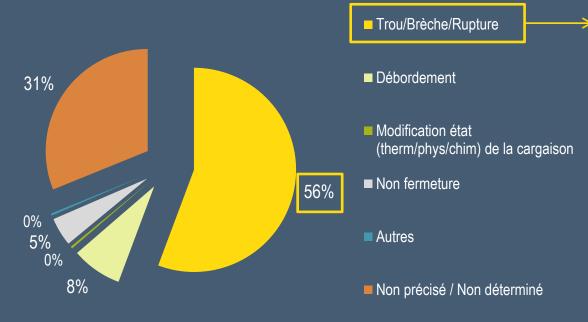
- ... en termes de volumes : part dominante = acides
 - Déversements « acides » : volume médian ≈ 500 m³
 - ... mais interprétation délicate (données/info SNPD souvent lacunaires)

Quels types de structures?

Fréquence des déversements (%) par type de structure


Note: Les principaux types de navires à cargaison liquide impliqués :

Quels types de structures?


Contribution des structures (%) au volume déversé

- Navires à cargaison liquide: majoritaire ; vol. médian ≈ 20 m³
- Installations pétrolières terrestres: faible; vol. médian ≈ 10 m³
- Navires à cargaison sèche : limitée ; vol. médian ≈ 15-20 m³
- Navires autres (barges NP, service, passagers, pêche) : faible; vol. médian ≈ 5 m³

Quels types d'évènements?

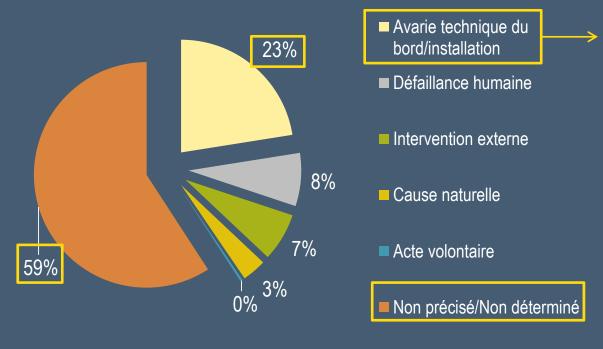
Fréquence des déversements (%) par type d'évènement

Evènements entraînant « Trou/Brèche/Rupture »	%
Perte d'étanchéité de structures (fuites, fissures, voie d'eau,)	30
Rupture, déstructuration	16
Collision navire / infrastructure	16
Naufrage (navire coulé/épave)	11
Collision navire / navire	9
Echouement / échouage	5
Renversement (chavirage/déraillement)	4
Explosion / incendie	2
Talonnage	2
Autres	2

Détail des « trous/brèches/ruptures »:

Perte d'étanchéité/fuites :

- 40 % = citernes, soutes, conduites internes de <u>navires</u>
- 25 % = conduites, lignes, etc. d'installations pétrolières


Ruptures /déstructurations:

- 40 % = lignes, bras de chargement, stockages, ... au sein d'installations pétrolières
 20 % = ruptures de lignes de navires (ex: durant opés de transfert)

Quels types de causes?

Fréquence des déversements (%) par type de cause

Types d'avaries techniques	%
Défectuosité/Vétusté (usure/corrosion)	62
Avarie technique du bord/installation Non précisée	17
Incendie / Explosion	11
Panne moteur / propulsion	2
Avarie gouvernail/ barre	2
Défaillance ancrage/amarrage	2
Dysfonctionnement instrumentation	2
Défaut/Carence de maintenance	2
Perte de stabilité	2
Autre Avarie technique du bord/installation	2

→ Cause NP dans 60 % des cas

- Avaries = en maj. « défectuosité/vétusté »
- Défaillances humaines = 8%

En résumé (1)

... généralités

Par rapport aux autres domaines (eaux marines, côtières, littorales, estuaires)

- Fréquence significative (env. 30% des cas; soit proche eaux marines/côtières à littorales)
- Déversements d'ampleur moindre (médiane x 1/4 à 1/6)
- Pollutions accidentelles portuaires : situations relativement <u>fréquentes</u>, mais d'ampleur <u>limitée</u>
 - typiquement < 10 m³; rarement > 100 m³
 - → Rapportage? Réponse (mise en œuvre, diffusion/retours)?

En résumé (2)

... Typologie

- Fréquence des déversements:
 - Hydrocarbures (90 % des cas) >> SNPD (6 %)
- Hydrocarbures:
 - 70 % des cas = raffinés légers ; faible ampleur (médiane ≈ 10 m³) ;
 - Déversements de bruts plus rares (15 %), mais plus importants (médiane ≈ 100 m³)
- SNPDs:
 - Produits diversifiés
 - 25 % des cas = acides

En résumé (3)

... Principales structures/sources

- Navires à cargaison liquide (fréq. ≈ 25 % / vol. méd. ≈ 20 m³)
- Navires à cargaison sèche (fréq. ≈ 15 % / vol. méd. ≈ 15-20 m³)
- Installations pétrolières terrestres (fréq. ≈ 15 % / vol. méd. ≈ 10 m³)
- Nav. divers (barges NP, service, passagers, pêche) (fréq. ≈ 15 % / vol. ≈ méd. 10 m³)

... Principaux évènements et causes

- Quelques indications (fuites ou ruptures de conduites, de stockages)
- ... mais <u>analyse limitée</u> par informations lacunaires (« causes » en particulier)

