

Cedre Information Day

Modelling chemical dispersion

Paris, 27 March 2013

Laurent Aprin

Institut des Sciences des Risques, LGEI, Ecole des Mines d'Ales

1. Introduction

- Context
- Phenomenological description

2. Dispersion mechanisms in the aquatic environment

3. Modelling strategies

- Surface release
- Subsurface release

4. Example of modelling

Passenger Vessels
Cargo Vessels
Tankers
High Speed Craft
Tug, Pilot, etc
Yachts & Others
Fishing
Navigation Aids
Unspecified Ships
Ships Underway

MarineTraffic.com

Significant shipping incidents involving Hazardous and Noxious Substances (HNS)

Source: European Maritime Safety Agency (EMSA)

Evolution of shipping incidents involving HNS

- Constant rise in chemical transport by sea
 - 3.5-fold rise in chemical shipping in 20 years
- Wide variety of chemicals
- ► Different physical and chemical behaviour in the marine environment → SEBC code

Number of accidents involving HNS

Increase in the probability of incidents with severe consequences

Wide variety of chemicals transported

Different response strategies

Example of an incident

levoli Sun (2000)

- Quantities transported
 - Styrene: 4000 T
 - Methyl Ethyl Ketone (MEK): 1000 T
 - Iso Propyl Alcohol (IPA): 1000 T

Quantities released:

- Styrene: 400 T
- Methyl Ethyl Ketone: 100 T
- Iso Propyl Alcohol: 1000 T

Leak in the bow thruster compartment

Example of an incident

levoli Sun (2000)

		Phase	S	d	Vp	
			[%]	[kg/m ³]	[kPa]	
•	Styrene	L	0.03	906	0.667	FE
•	MEK	L	26.3	805	10.33	D
•	IPA	L	79	786	4.1	D

- Formation of a toxic cloud?
- ► Risk of fire or explosion?

Phenomenological description

Classification conditions

- Pure substance
- Small quantity
- ► 20°C
- Atmospheric pressure
- Fresh water

Limitations

- Non-representative conditions
- Possible presence of different products
 - Alteration of dissolution
 - Chemical reaction
- No consideration of dynamics
 - Dissolution
 - Competition between phenomena

Real conditions

- Not necessarily pure
- Several tonnes
- ► 4°C
- 10 bars
- Seawater

Phenomenological description

Example of behaviours

Sinker (e.g. Toluene Diisocyanate)

Floater (e.g. Dodecylbenzene)

Evaporator (e.g. Styrene)

Dissolver (e.g. butanol)

Dispersion mechanisms

Surface release

- **1.** Determination of source term (quantity released or rate)-> Bernoulli
- 2. Material balance according to time

Surface area of the product? Quantity evaporated? Quantity dissolved? How long?

Modelling

Modelling

Division of slick into unitary elements (spillets) to represent the total surface area of the slick

- **1.** Calculation of the evolution of each spillet over time (Runge-Kutta discretization scheme)
 - Spreading rate of each spillet (*Nihoul, 1983*)
 - Quantity evaporated (Mackay and Matsugu, 1973)
 - Quantity dissolved (Hayduk and Laudie, 1974)
- 2. Material balance for each spillet

Modelling

Modelling

Division of slick into unitary elements (spillets) to represent the total surface area of the slick

- 1. Calculation of the evolution of each spillet over time (Runge-Kutta discretization scheme)
 - Spreading rate of each spillet (*Nihoul, 1983*)
 - Quantity evaporated (Mackay and Matsugu, 1973)
 - Quantity dissolved (Hayduk and Laudie, 1974)
- **2.** Material balance for each spillet
- **3.** Coupling with hydrodynamic predictions
 - **1.** Movement of spillets at each time step

Dispersion mechanisms

Subsurface release

- **1.** Determination of source (quantity released or rate)-> Bernoulli
- 2. Product dispersion mechanism
- 3. Upwelling hydrodynamics (speed)
- 4. Material transfer (dissolution)

Appearance of substance at surface Volume at the surface? When? How long?

Modelling release rate at breach

1. Two hydrodynamic behaviours

2. Modelling by a local energy balance (Bernoulli)

Modelling release rate at breach

Constant rate Q, Linear section Σ

Diphasic release at the exit opening

Monophasic release at the exit opening

Modelling fragmentation of the leak

Assessment of particle size distribution

Modelling fragmentation of the leak

- 2 types of particle size distributions
- Maximum droplet diameter 22 mm

Modelling fragmentation of the leak

- Representation of particle size distributions by log-normal
 - **1.** Monophasic release: monomodal distribution
 - 2. Diphasic release: bimodal distribution

Modelling droplet hydrodynamics

- **1.** Modelling droplet upwelling speed with the Clift correlation (1978)
- 2. Coupling with hydrodynamic predictions to take into account the movement of the bubble plume

CDOG model, Clarkson Univeristy 20

- **1.** Leak from a 600 m3 tank
- 2. Breach punctured along 10 cm in diameter

Source: BEAMer CEPPOL: Centre d'Expertises Pratiques de Lutte Antipollution

- **1.** Modelling the leak rate: tank emptied in 1h44
- 2. Dispersion in the water column
 - 1. Number of droplets per diameter group for 1m3 of substance released
 - 2. Distribution of volume per group for 1m3 of substance released

- **1.** Dissolution of the different droplet groups
 - Evolution of volume over time ($\Delta t = 15$ s)

Evolution of proportion of initial volume remaining with height

After 10 m: 96% of total volume is dissolved After 20 m: the butanol is completely dissolved

Modelling dispersion of chemicals at sea

Consideration of other mechanisms Settling Bioaccumulation Volatilisation

Consideration of environmental parameters Water temperature Salinity Hydrostatic pressure

Thank you for your attention

